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Abstract
The role of random onsite and hopping disorder in inducing a Bardeen–Cooper–Schrieffer
superconductor to Bose–Einstein condensate (BCS–BEC) crossover is investigated using the
Bogoliubov–de Gennes (BdG) method on a negative-U Hubbard model in two dimensions. In
the strong disorder limit, the BdG state becomes highly inhomogeneous with the formation of
superconducting ‘droplets’ which are characterized by large pairing amplitudes. The different
physical properties calculated for the inhomogeneous state differ significantly from the pure
system at all values of electron densities, while we show that a crossover to a BEC state, if at
all, is possible at low electron densities. The random onsite disorder supports such a crossover
scenario, which is confirmed by observing the chemical potential to slip below the
noninteracting band (Leggett criterion). The hopping disorder, however, renders a delocalized
phase which allows for overlapping between the pairs, thus preventing the formation of a ‘local
pair’ phase. Also the increase in bandwidth induced by hopping disorder always accommodates
the chemical potential inside the band, and hence rules out a crossover phenomenon. However,
another variant of the off-diagonal inhomogeneity, i.e. an anisotropic hopping, offers a
pro-crossover scenario in the large anisotropy limit.

1. Introduction

The problem of crossover from a Bardeen–Cooper–Schrieffer
superconductor (BCS) characterized by largely overlapping
Cooper pairs to a Bose–Einstein condensate (BEC) of tightly
bound, short ranged pairs has invoked enormous excitement
among physicists in recent times. The initial attempts on the
BCS–BEC crossover phenomenon were made by Eagles [1]
and later by Leggett [2]. Using a variational approach, they
had shown that the BCS ground state wavefunction is capable
of describing a smooth transition from a BCS ground state to
a BEC of diatomic molecules by a controlled tuning of the
strength of the attractive interaction at T = 0. Further work on
the subject of crossover, done by Nozieres and Schmitt–Rink
(NSR) [3], was to extend the problem to finite temperatures
and in models with discrete symmetries, i.e. lattices. They
determined the transition temperature, Tc that separates the
superconducting and normal phases, via the Thouless criterion.
NSR showed that Tc continuously evolves as a function of
attractive interaction between the fermions.

Since the discovery of short coherence length supercon-
ductors (e.g. the cuprates), which are believed to occur in
between large coherence length conventional superconductors

(BCS) and a phase with extremely short (of the order of one lat-
tice spacing) pairing correlations, the crossover phenomenon
has received renewed attention. Attempts were made to inter-
polate between the two extreme limits so as to visit the physics
that is operative for these superconductors. In this regard, Ran-
deria and coworkers [4] initiated formal studies where a dilute
gas of fermions in two dimensions interacting via a given two-
body potential is shown to display a smooth crossover from
a BCS to a BEC phase. Subsequently a great deal of work
using variational techniques [4–6], functional integral meth-
ods [7], the diagrammatic approach [8–13], numerical studies
such as quantum Monte Carlo [14, 15] and dynamical mean
field theory [16] followed which have extensively investigated
the normal and superconducting states (both above and below
Tc). Some of these works have systematically gone beyond the
standard mean field approximation to incorporate thermal and
quantum fluctuations.

There is a growing consensus that the crossover scenario
may provide us with a route to understand unusual features
exhibited by the unconventional superconductors. Based
on the μSR and magnetic field penetration data, Uemura
et al [17] suggested that the unconventional or the ‘exotic’
superconductors belong to a separate class of materials
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characterized by high-Tc, short coherence length ξ and
low superfluid density, which are unlike their conventional
counterparts. Further, the short ξ found in these materials,
generate a scenario which is akin to a system consisting of
local bosons. Finally, the boson condensation temperature,
TB, at which the noninteracting Bose gas condenses (TB is
analogous to T ∗ at which local pairs form in the underdoped
phase of cuprates), is almost one order of magnitude greater
than the superconducting transition temperature Tc in these
systems. The results encourage a generalization of the BCS
theory to be more suitable to the situation, rather than pursuing
a search for more exotic theories [18–20]. In fact the coherence
length, ξ (or its dimensionless variant kFξ , kF being the Fermi
wavevector) is an appropriate quantity that tracks the crossover
phenomenon [21], such that at kFξ � 2π , the system becomes
unstable against bosonization and the concept of Fermi surface
gets wiped out. Further, a meaningful connection to the
Uemura plot is obtained as the unconventional materials are
found to lie near the kFξ � 2π line in the plot and hence are
closer to Fermi surface instability.

The theoretical endeavours gathered momentum with the
experimental realization of a BCS–BEC crossover occurring
in a dilute gas of Fermi atoms subjected to a magnetic trap,
where the pairing potential (scattering length) is manipulated
by a Feshbach resonance [22]. An extensive list of references
on the subject of crossover, its relevance to the cuprates, the
experimental achievements and the theoretical triumph may be
found in [23] and [24].

So far we have discussed the evolution from BCS to a BEC
as the coupling strength associated with an effective fermionic
potential is enhanced. We next focus on the significance of
the density of charge carriers in causing a crossover. In fact,
the combined effects of density and interparticle potential [25]
have been investigated and yield important conclusions such
as the robustness of the crossover scenario for all densities in
the case of s-wave pairing; however, the same is not true for
d-wave pairing at large densities. The reason being, at large
densities, there is a substantial overlap between the spatially
extended (d-wave) pairs even for strong attractive interactions.
An elaborate discussion on density induced crossover in the
presence of different types of fermionic interaction potentials
has also been done by Andrenacci et al [26]. They have shown
that the absence of a threshold (for the formation of a two-
body bound state) in d-wave systems and the existence of
a finite range of potential favour density driven crossover in
two-dimensional lattice systems. In addition, they have found
out the essential criterion for the presence of crossover (as a
function of density) in the continuum case.

We turn towards yet another quantity that is capable
of driving a system through crossover. The role of
structural disorder in inducing a smooth evolution from a
BCS superconductor to a BEC superfluid was put forward
earlier [28]. More recently, a strongly disordered attractive
Hubbard model with infinite range hopping (where mean field
theory is exact) is shown to emulate a smooth BCS–BEC
crossover as the range of hopping is varied [29]. Further, the
ground state properties of a superfluid Fermi gas are studied
across a BCS–BEC crossover in the presence of random

disorder at T = 0 [30]. The main observation in [34] is that the
superfluid order parameter shows a non-monotonic behaviour
as a function of interaction strength with a pronounced dip near
the crossover regime. The renormalization effects are more
pronounced as one moves towards the BEC limit.

The various works listed above do not put emphasis on
evolution from a BCS to a BEC as a function of the strength
of disorder alone. The investigation of the effect of disorder
on the superconducting properties of dirty metals has a long
history dating back almost to the advent of BCS theory [31].
Renewed efforts during the 1980s [32–34] have revealed that
in the strong disorder regime, the pairs lose their large spatial
extension and become localized. A good review on the subject
may be found in [39]. From the ongoing discussion, it is clear
that disorder crucially affects superconductivity, however, at
low densities, as we shall show later, it induces a crossover
from a homogeneous (BCS) phase to a BEC superfluid.

Numerics, to investigate disorder effects on superconduc-
tivity, were used extensively [36–40]. Since the main objective
was to study how superconducting properties respond to disor-
der and because the superconducting correlations are strongest
at large electron densities, these studies were mostly restricted
to large densities (and weak coupling). In any case, the main
observation was that the spectral gap persists in the presence
of disorder, as is evident from the formation of superconduct-
ing islands, characterized by large pairing amplitudes and sepa-
rated by regions which are insulating in nature. As the strength
of disorder is enhanced, the islands shrink, making room for
the intervening insulating seas. At small electron densities, the
islands (or what we call ‘droplets’ here) are more localized and
thus bear fingerprints of a BEC phase which has very short and
local pairs. However, we should be cautious in issuing a state-
ment such as above, since this, if at all, will be true only in the
mean field sense. In the presence of strong disorder, quantum
fluctuations, the importance of which are underscored in the
literature [37, 39], will play a crucial role.

In this paper, we study superconductivity in the presence
of random onsite and hopping disorder using Bogoliubov–de
Gennes (BdG) method [41] on a negative-U Hubbard model in
two dimensions. BdG renders an appropriate treatment to the
spatial inhomogeneity of the local pairing amplitude induced
by disorder. Hopping anisotropy is included for comparison
with our earlier studies on the subject [43]. The main objective
is to obtain a smooth evolution from a BCS ground state to a
‘local pair’ phase whose properties bear much in common with
the BEC. However, such a crossover is only possible at low
densities as will be explained below and the crossover scenario
is confirmed by calculating the chemical potential which slips
below the noninteracting band, thus tending to the limit of
binding energy of a pair (Leggett criterion).

In the next section, the model Hamiltonian and a brief
description of the BdG method are presented. The third section
deals with a detailed description on the subject of crossover
in disordered superconductors, where we discuss different
candidates, such as random onsite and hopping disorder, and
in addition study the case of anisotropic hopping. A summary
of the results and their implications are presented in section 4.
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2. The model

We consider an attractive Hubbard model on a two-
dimensional square lattice,

H = −
∑

〈i j〉,σ
(t + δti j)(c

†
iσ c jσ + h.c.)

− |U |
∑

i

ni↑ni↓ +
∑

i,σ

(Vi − μ)niσ . (1)

Here t is the transfer integral, c†
iσ (ciσ ) is the creation

(destruction) operator for an electron with spin σ at a site ri ,
|U | is the magnitude of onsite interaction, niσ = c†

iσ ciσ and
μ denotes the chemical potential. To model random onsite
disorder, we let δti j = 0 for all i and j and Vi be chosen
randomly from a Gaussian distribution of the form,

P[Vi(σ )] = 1√
2πσ 2

exp

[
− V 2

i

2σ 2

]
. (2)

In a similar fashion, hopping disorder is modelled by letting
Vi = 0 for all i and δti j to be chosen from a Gaussian
distribution, which may be obtained as one replaces Vi by δti j

in equation (2). Here σ denotes the width of the distribution
and parametrizes the strength of disorder in our computation,
i.e. larger σ implies stronger disorder. The third kind of
inhomogeneity, i.e. hopping anisotropy, which is a case of
correlated disorder, is modelled trivially by choosing δti j =
Vi = 0 and the hopping is t when i and j are neighbours in the
x-direction, while it is r t when j is the y-neighbour of i , with
r the anisotropy parameter (0 < r � 1).

To solve equation (1), we resort to the mean field
decoupling of the interacting term that yields the local pairing
amplitudes and local density as,

�(ri) = −|U |〈ci↓ci↑〉 and 〈niσ 〉 = 〈c†
iσ ciσ 〉. (3)

The effective Hamiltonian is given by,

Heff = −
∑

〈i j〉,σ
(t + δti j)(c

†
iσ c jσ + H.c.) +

∑

i,σ

(Vi − μ̃i )niσ

+
∑

i

[�(ri)c
†
i↑c†

i↓ − �∗(ri )ci↑ci↓] (4)

where μ̃i = μ + |U |〈ni 〉/2 and 〈ni 〉 = ∑
σ 〈niσ 〉.

The following transformations are used to diagonalize
equation (4) [39],

ci↑ =
∑

n

[γn↑un(ri ) − γ
†
n↓v

∗
n (ri)],

ci↓ =
∑

n

[γn↓un(ri ) + γ
†
n↑v

∗
n(ri )]

(5)

where γn and γ †
n are the quasiparticle operators, un(ri ) and

vn(ri ) are the BdG eigenvectors satisfying
∑

n[u2
n(ri ) +

v2
n(ri )] = 1 for all ri . In terms of these amplitudes,

equation (4) is written as,

(
K̂ �̂

�̂∗ −K̂ ∗

) (
un(ri )

vn(ri )

)
= En

(
un(ri )

vn(ri)

)
(6)

where K̂ un(ri ) = −t
∑

δ un(ri + δ̂) + (Vi − μ̃i )un(ri ), with
δ̂ = ±x̂,±ŷ and �̂un(ri ) = �(ri)un(ri ) and similarly for
vn(ri ).

Hence we calculate the local pairing amplitudes and
number density in terms of un(ri ) and vn(ri ) using,

�(ri ) = |U |
∑

n

un(ri )v
∗
n(ri ) and

〈ni 〉 = 2
∑

n

|vn(ri )|2.
(7)

The usual procedure for obtaining �(ri) and 〈ni 〉 self-
consistently consists of making initial guesses for �(ri ) and
the renormalized chemical potential μ̃i for all ri , diagonalize
equation (6) for the eigensolutions En and (un(ri ), vn(ri )) re-
compute �(ri) and 〈ni 〉 using equation (7). The process is
iterated until self-consistency is achieved for these quantities
at each site.

Equation (7) can be generalized to finite temperatures,
however, an attempt to interpolate between BCS (at small
|U |) and BEC (at large |U |) at finite temperatures, may be
inappropriate as the mean field transition temperature Tc in
the BEC limit is found to be proportional to |U |, whereas the
actual scale is found to be that of J (∼ t2/|U |) [16]. In this
paper, we have restricted ourselves to T = 0 (except for a brief
discussion on figure 4) and kept |U | unaltered (an interpolation
from BCS to BEC is attempted by tuning the disorder), yet
quantum fluctuations, as mentioned earlier, will be there.

At the outset we discuss the size dependence issues related
to our computation. We have obtained ground state energy,
Egs and superfluid stiffness, Ds for |U | = 1.5t and n = 0.1
and lattice sizes up to 24 × 24. (See figure 1). Energies are
among the quantities which are not too sensitive to system size.
However, Ds (defined in equation (8)) is denoted in terms of
correlation functions, and is likely to display dependence on
system size. Both these quantities plotted corresponding to the
pure case, as seen in figure 1, do not show any appreciable
dependence on size, for sizes greater than 12 × 12 and
since we are primarily interested in qualitative behaviour of
physical quantities that emphasize the crossover phenomenon,
we decided to carry out our computation on a 12 × 12 lattice.

Next we comment on the choice of physical parameters.
We perform studies for a few choices of the Hubbard
interaction parameter U and electron density n. The choice of
U is expectedly small, as our starting point is a weak coupling
superconductor (BCS). As for the density, figure 2 shows that
the chemical potential slips below the noninteracting band only
at small n (for moderate values of U ). It is important to
note that the chemical potential μ (in fact, a scaled value,
namely μ′ = μ/4t is useful for discussion) does not fall below
the band edge (μ′ = −1) for |U | less than ∼5.5t even for
density as low as 0.1. In the next section we shall show that
disorder can induce a crossover at much smaller values of U ,
i.e. |U | = 1.5t at the same density (n = 0.1). At large
densities, namely n � 0.8, as is transparent from figure 2,
there is no crossing of μ′ below −1 even at reasonably large
coupling, thereby making it impossible for disorder to induce a
crossover at weak coupling. Thus we have chosen |U | = 1.5t ,
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Figure 1. The size dependencies of the ground state energy Egs (a) and superfluid stiffness Ds (b) are shown up to lattice sizes 24 × 24 for the
pure case. A best fit line drawn shows no appreciable size dependencies for sizes 12 × 12 onwards. As mentioned in the text, all figures
(except for figure 2) are plotted corresponding to |U | = 1.5t and n = 0.1 and not repeated hereafter.

Figure 2. The (scaled) chemical potential μ′ (= μ/4t , 4t being the
noninteracting bandwidth) is shown as a function of |U |. The
slipping below the band occurs for low densities and at best moderate
couplings, i.e. |U | ∼ 5.5t for n = 0.1.

n = 0.1 and all the plots (except for figure 2) are generated for
these values of the parameters. Further, we have investigated
disorder strengths till σ/t = 3 and all the results for various
physical quantities that we obtained are averaged over ten
different disorder configurations.

3. Results

In the subsequent discussion, we present results of various
physical quantities that are calculated to gain insight into the
effect of disorder on superconductivity and on the issue of
BCS–BEC crossover.

3.1. Onsite disorder

We plot the spatial distribution of electron occupancies 〈ni 〉
(= 2

∑
n v2

n(ri ) in figure 3 for two different disorder strengths,
namely σ/t = 1 and 3. The plot corresponding to stronger
disorder shows localized electron occupancies and thus is
supportive of a phase comprising of short and local pairs,
reminiscent of a BEC phase. Such plots are also available
for higher densities (not shown here), where the electron

Figure 3. Greyscale plots of spatial charge distribution 〈ni 〉
(= 2

∑
n v2

n(ri)) for disorder strengths σ/t = 1 and 3. The localized
nature of the charge densities is to be noted for larger disorder.

occupancies show considerable overlap. Further, plots for
pair amplitudes �(ri ) are also available, they are discussed
in [41, 43] and carry no extra information than the 〈ni 〉
distribution mentioned above, hence are not included here.

Evolution from a BCS state to a BEC is merely a suspicion
at this moment and we shall get back to the issue soon.
Meanwhile the renormalization of various quantities as the
disorder strength is varied is certainly a matter of interest.
Ghosal et al [39] have investigated many of the important
quantities in detail. We shall not repeat them (albeit their
calculations are done at high densities), but only consider a
few of them which are relevant to us.

In what follows, we show a gradual emergence of
unconventional features in the system with disorder that merit
discussion. We begin with the notion of off-diagonal long
range order (ODLRO). The ODLRO order parameter �op is
defined by the long distance behaviour of the disorder averaged
correlation 〈c†

i↑c†
i↓c j↓c j↑〉 → �2

OP/|U |2 for |ri − r j | →
∞ [44]. We plot the temperature dependence of �op and the
double occupancy nd (=〈ni↑ni↓〉) between the BdG states with
and without disorder (figure 4) [14]. The temperature at which
they vanish (or become negligible) is the same for the pure
system, while it differs considerably for σ/t = 1. The result is
important in the sense that it shows pair formation (indicated
by nd) and condensation (indicated by �op) are same for the

4
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Figure 4. The off-diagonal long range order ODLRO and double occupancy nd are shown as a function of temperature T for σ/t = 0 (a) and
1 (b). The pure case shows a unique temperature scale for them to become negligible, while they occur at considerably different temperatures
for the disordered case.

Figure 5. The spectral gap, Egap and the ODLRO order parameter,
�OP (defined in the text) are shown as a function of disorder. Note
that they coincide for small σ/t but progressively differ with
increasing disorder.

pure system, however, the two processes happen at different
temperatures in disordered systems. Another important
quantity which provides an estimate of how superconductivity
is affected in the presence of disorder is the spectral gap, Egap,
obtained as the lowest eigenvalue of the BdG theory. Egap and
�OP are the same in the absence of disorder (σ = 0). However,
the two show progressively different behaviour as a function
of disorder, a feature which pushes the inhomogeneous BdG
state to the unconventional regime (figure 5). The non-
monotonic dependence of Egap (bending upwards at larger
disorder strengths) has been addressed via pairing of exact
(noninteracting) eigenstates [39].

Next we focus on the superfluid stiffness Ds given by the
Kubo formula [45]

Ds

π
= 〈−Kx 〉 − �xx (qx = 0, qy → 0, iω = 0) (8)

where the first term 〈−Kx 〉, defined as

〈−Kx 〉 =
〈
∑

σ

−
[
(t + δti,i+x̂ )(c

†
i+x̂ ci + c†

i ci+x̂)
]〉

(9)

Figure 6. The superfluid stiffness, Ds is shown as a function of
disorder. At large disorder, Ds becomes very small, implying a sharp
decrease in superfluid density, ns.

is the kinetic energy along the x-direction and represents
the diamagnetic response to an external magnetic field. The
paramagnetic response is given by the second term which is
the disorder averaged transverse current–current correlation at
different times and is given by

�xx (q, iωn) =
∑

ri

∫ β

0
dτ 〈 jx(ri , τ ) jx(0, 0)〉eiq·rei−ωnτ . (10)

It may be noted that the superfluid stiffness is large for
pure systems where more energy is required to destroy
phase rigidity, while it is less in the presence of disorder,
which may be attributed to the formation of localized
superconducting correlations (superconducting ‘droplets’) in
the inhomogeneous state. Ds is also looked upon as a
measure of density of superelectrons, namely ns (Ds/π =
ns/m∗, m∗ being the effective mass). Figure 6 shows a
considerable decrease in Ds (or equivalently ns, as m∗ is
negligibly affected) as σ is increased, a feature noted for
unconventional superconductors such as the cuprates.

The unconventionality in the context of BCS–BEC
crossover, i.e. the need to go beyond standard mean field
theory (BCS) in the strong coupling limit is emphasized

5
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Figure 7. The scaled chemical potential, μ′ is plotted as a function of
disorder. μ′ crosses the band minimum μ′ = −1 (shown by the
dashed line) at σ/t � 1.2.

Table 1. The contribution of the bound pairs (bosons) nB to the
number equation in BCS theory is shown at small and large values of
disorder. The contribution is negligible at small disorder, but is
significant in the presence of strong disorder.

Disorder strength (σ/t) nB = ∂〈Heff(σ )〉
∂μ

0.00 0.0000
0.01 0.0081
2.00 0.0146
2.50 0.0245
3.00 0.0323

by NSR [3]. The fluctuations due to the presence of
bound pairs (bosons) are usually computed within a Gaussian
approximation. The number equation incorporates the effect
of Gaussian fluctuations, while leaving the gap equation
unaltered [7]. At T = 0, the modification to the fermionic
number density n appears in the form,

n′ = n + nB (11)

where nB = − ∂B
∂μ

[30], B being the thermodynamic
potential for the bosons.

The purpose of the above discussion is as follows—in a
disorder driven crossover scenario, the system must consist of
bound pairs in the large disorder regime. So the correction,
i.e. the second term in equation (11) is inevitably present due
to the formation of bound pairs. A rough estimate of this term,
i.e. nB or B can be done using1,

∂B

∂μ
� ∂ E

∂μ
∼ ∂〈Heff(σ )〉

∂μ
(12)

where E represents the internal energy of the system and 〈Heff〉
(defined by equation (4)) is computed within the BdG states.
The results at small and large values of disorder presented in
table 1 show that the correction term is negligible at small
disorder and grows by roughly one order of magnitude in the
presence of strong disorder.

1 The thermodynamic potential  = −PV = K E , where K is a constant
which depends on statistics and dimensionality. See [46].

Figure 8. The greyscale plot of spatial charge distribution is shown
for two different hopping disorder strengths, namely σ/t = 1 and 3.
Unlike the onsite disorder case, the distribution is scattered at large
disorder.

Figure 9. Average kinetic energy (negative of the expression used in
equation (9)) for both hopping and onsite disorder as a function of
disorder strength, σ .

The calculations presented above are only approximate,
however they illustrate the importance of (bosonic) fluctuations
in the presence of strong disorder for a fermionic superfluid.

We finally show the (scaled) chemical potential μ′ as
a function of disorder in figure 7. μ′ crosses below the
noninteracting band edge at σ � 1.2t , separating a BCS-like
superconductor (at lower σ ) and a BEC phase (higher σ ). To
investigate density effects, we noted that μ′ does not slip below
the band minimum for larger densities (not shown here).

3.2. Hopping disorder

We study the effect of random hopping (off-diagonal) disorder
on a superconductor, as our next candidate in the discussion
on the BCS–BEC crossover. The ability of hopping disorder to
induce a crossover phenomenon is under suspicion. The reason
is as follows—random hopping events of the electrons cause
delocalization, rather than a localized charge distribution, as
was the case for onsite disorder. This can be seen by computing
〈ni 〉 for σ/t = 1 and 3 as shown in figure 8. To illustrate the
presence of delocalization effects as contrary to localization
caused by onsite disorder, we present the variation of average
kinetic energy along the x-axis i.e. 〈Kx 〉 for both kinds of
disorder in figure 9. Further evidence of the contradictory
behaviour that affects the crossover phenomena for these two
kinds of disorder are presented in figure 10. Figure 10(a) shows

6
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Figure 10. Average potential (defined in text) and kinetic energies are plotted as a function of disorder, σ for (a) onsite and (b) hopping
disorder.

Figure 11. Ds is shown versus disorder strength for hopping
disorder. It shows a gradual increase because the diamagnetic
contribution (average kinetic energy) dominates the behaviour of Ds.

that for onsite disorder, the average potential energy, i.e. 〈Û 〉
(=|U |〈∑i ni↑ni↓〉 = |U |nd) increases, while 〈Kx 〉 decreases,
thus both contributing to localization. The scenario is reversed
for hopping disorder, where the sharp increase in kinetic energy
renders delocalization, suppressing the negligible increase in
average potential energy.

Also superfluid stiffness (figure 11) behaves differently
than the onsite disorder case, i.e. Ds is found to increase with
disorder. The explanation for this behaviour is contained in
equation (8), where the first term on the left (〈−Kx 〉) dominates
the behaviour of Ds in the presence of disorder and at large
disorder Ds is entirely governed by this term. However, Ds

falls initially at smaller values of disorder where an increase in
the paramagnetic response offsets the rise in the diamagnetic
term (see equation (8)). Expectedly, μ′ in2 figure 12 does
not slip below the band edge and hence does not qualify to
be a candidate for the crossover scenario. The enhancement
of the noninteracting bandwidth owing to hopping disorder
accommodates the chemical potential inside the band for all
values of disorder.

We consider another situation where the carriers are
allowed to move preferentially in one particular direction (say

2 The scale factor (=μ(σ)/μ′(σ )) is obtained from a linear fit of
noninteracting band minimum values as a function of σ , so as to keep the
band minimum at μ′ = −1 for all values of σ .

Figure 12. The scaled chemical potential is plotted as a function of σ
for the case of hopping disorder. μ′ does not cross the band edge,
thereby ruling out a crossover scenario.

the x-direction), while the movement is strongly restricted in
the other direction (y-direction) owing to anisotropic hopping
frequencies. This is implemented in our calculations by
introducing a tunable (anisotropy) parameter that gives a
measure of the preferential hopping of the charge carriers.
A similar problem was discussed earlier by us [43] in the
context of BCS–BEC crossover, where an anisotropic hopping
was considered in the strong coupling limit of the (repulsive)
Hubbard, i.e. the t–J , model. We indeed found a crossover
to exist at low densities and in the large anisotropy limit.
The procedure was to solve BCS gap equations with a mixed
symmetry for the superconducting gap parameter. The mixing
(between (extended) s and d-wave channels) occurs due to
lowering of the underlying lattice symmetry, i.e. from square
to rectangular, in the presence of hopping anisotropies.

The crossover scenario is understood better with a
reference to the dilute case. For two electrons, in the presence
of hopping anisotropy, it was shown earlier that a bound
state is possible with infinitesimal attraction in the limit of
extreme anisotropy [42]. Moreover, it was found that a
bound state becomes favourable for two electrons moving
along different chains of a two-leg ladder (rather than along
the chain) and hence form a stable pair when anisotropy is
large. The same problem of confinement of the carriers can
be investigated in a model where the isotropic (onsite) s-wave
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Figure 13. μ′ is plotted versus anisotropy parameter r(= ty

tx
) showing

a crossing below the band minimum at very small values of r (the
extreme anisotropy limit).

pairing correlations are strongest and also extend the two-
particle problem to finite densities. The formalism that we
have used in this paper, i.e. BdG approximations, provides
scope to explore the scenario in a negative-U Hubbard model.
Without bothering much about the physical properties of the
anisotropic superconductor (we have computed the length
scales that characterize the condensate earlier [43]), here we
take a look at the chemical potential. The (scaled) chemical
potential μ′ (=μ/2t (1 + r)) as a function of the anisotropy
parameter r is plotted in figure 13. μ′ slips down the band
minimum at a small value of r , i.e. in the extreme anisotropy
limit, following band narrowing effects and thus presents a case
for the crossover scenario [43].

4. Conclusions

We have investigated the effect of random disorder on the
evolution of a BCS to a BEC superfluid using the BdG
approximations on a two-dimensional square lattice. The study
includes both onsite (diagonal) and hopping (off-diagonal)
disorder. While onsite disorder presents a case for inducing
a crossover due to localization effects, hopping disorder is
shown to be not a catalyst for the crossover phenomenon,
owing to delocalization of the charge carriers. The existence
(or non-existence) of the crossover scenario is confirmed
by calculating the chemical potential, which when it slips
below the noninteracting band minimum, yields a crossover
to a Bose phase. A third candidate of the crossover story,
presented by the hopping anisotropy, yields a crossover in the
extreme anisotropy limit, a possible artefact of the dimensional
confinement of the charge carriers. The effect of carrier
concentration on the crossover phenomena is also discussed
and it is concluded that low density facilitates a crossover
phenomena at moderate values of interparticle attraction. At
higher densities, the overlap between the pairs increases
substantially, thus denying access to a phase comprised of local
pairs, reminiscent of a BEC phase.

We have presented mean field results, thus missing out the
phase fluctuations which must be present in the strong disorder
regime and may be important in the context of BCS–BEC

crossover. A rough estimate of the fluctuations arising due
to formation of short (and tightly bound) pairs is made which
shows that the number equation (in BCS theory) should invoke
the bosonic contribution in the presence of strong (onsite)
disorder.
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